
A Goal-oriented Approach for Designing Collaboration Processes

Bahar Ghadiri Bashardoost
University of Toronto

ghadiri@cs.toronto.edu

Kelly Lyons
University of Toronto
klyons@cs.toronto.edu

Rock Leung
SAP

Rock.leung@sap.com

Abstract

Although Group Support Systems (GSSs) have been
studied and developed for many years, they are not
widely used in practice. One of the challenges of using
GSSs is that extensive knowledge and expertise are
needed in order to design effective collaboration
processes. Research has sought to make this
knowledge available to practitioners by introducing
modules of collaboration called thinkLets; however,
facilitation expertise is often still needed to select the
correct thinkLet(s) for a given group activity. We
propose an approach for designing collaboration
processes that makes use of multi-criteria decision
making, decision-tree models, and goal programming.
The effectiveness of our approach was evaluated by
comparing collaboration process designs developed by
people using our prototype with those by people using
detailed written documentation. We found that our
approach significantly improves the efficiency of the
collaboration process design procedure by guiding
practitioners in choosing the best combination of
thinkLets.

1. Introduction

Increasingly, collaboration is required to solve the
complex problems of today. The wide range of
information technologies from e-mail to Group
Support Systems (GSS) are key enablers for effective
and efficient collaboration [3]. Group support systems
are among the few e-collaboration technologies that
provide a structure that can support group development
and productive outcomes [22]. They have also been
shown to increase a team’s productivity in many
circumstances [15,25,10]. Studies suggest that GSS
tools, when used properly, improve efficiency,
effectiveness, usability, consensus building and
satisfaction in comparison with manual methods [14].

Nunamaker et al., propose that one of the basic
principles of successful use of GSS tools is to have a
well defined goal and to be able to design a GSS
session which can clearly advance the team members
toward accomplishing that goal [23]. However,

designing collaboration processes that effectively
harness the knowledge of multiple people in
collaborative efforts and push them towards achieving
a shared goal is not an easy task [20].

Collaboration engineering is a field of study
established to encapsulate key facilitation techniques to
support the execution of collaborative activities by
teams that do not have professional facilitation support
[18]. One of the key concepts introduced through
collaboration engineering is the notion of repeatable
processes called thinkLets. Each thinkLet includes: 1) a
description of a tool or GSS component that can be
used; 2) details regarding how to configure the tool;
and 3) a script which contains instructions that should
be given to the decision-making group in using the tool
during the session [7]. It has been shown that a small
change in any of these three pieces of information can
change the outcome of the collaboration process
significantly [21,7]. Researchers argue that by making
these three pieces of information available through
thinkLets to non-experienced facilitators, decision-
making groups can produce predictable outcomes [7].

Detailed documentation is made available for each
thinkLet that summarizes the criteria for deciding when
and when not to use that thinkLet. Among these
criteria, the documentation highlights the input
required by the thinkLet (e.g., large number of
brainstorming comments) and the structure of
thinkLet’s output (e.g., a set of comments organized by
discussion topic) [7].

ThinkLets can be sequenced together to produce a
collaboration process such that the output of one
thinkLet is used as an input for the next thinkLet. A
combination of two thinkLets is called Tricky when the
output of the first thinkLet is not fully compatible with
the input of the second thinkLet [19]. If the output of
the first thinkLet is not at all compatible with the input
of the second thinkLet the combination is called
Impossible [19]. Otherwise the combination of the two
thinkLets is called Excellent [19].

Toolkits have been developed to guide practitioners
(domain experts with scant knowledge of collaboration
engineering) through the selection of thinkLets [20,29].
Nevertheless, even toolkits that have been developed
based on collaboration engineering principles still

require a facilitation expert to decide among
alternatives at various stages of the process design.

In this paper we introduce a design approach and
accompanying tool called CP-Dez which can guide
practitioners in the design of a collaboration process by
helping them to choose the right sequence of thinkLets
for a given decision task without requiring expert
intervention. This is possible because we use a decision
tree and multiple criteria decision making (MCDM)
techniques including goal programming. A decision
tree is used to classify the different thinkLets. In some
cases, the best thinkLet can be identified by traversing
the decision tree. However, when the classification
rules of the decision tree are not sufficient to identify a
single thinkLet, goal-programming combined with
additive value function rules are used to help a
practitioner make trade-offs and choose a single
thinkLet that most satisfies the group goals. Our
contributions can be summarized as follows:
• We propose a model to capture and represent the

knowledge of collaboration engineering. Our
model is easy to extend and maintain by
individuals or collaboratively by a community of
collaboration engineers.

• We propose a method that, given a set of domain-
specific criteria, extracts a high-quality
collaboration process from the model. This
method which is based on MCDM can be used by
practitioners to design a collaboration process.

• We created a prototype based on our proposed
design and ran a preliminary user study to evaluate
the effectiveness of our approach. The evaluation
was performed by comparing participants who
used our prototype to identify thinkLets for a
collaborative activity, with those who used the
thinkLet book [5]. The results suggest that our
approach can significantly improve the efficiency
of the collaboration design procedure.

In section 2, we delve deeper into the motivation
for our design and overview related work. In section 3,
we present the details of our design. In section 4, we
describe the study used to evaluate the effectiveness of
our prototype. In section 5, the results of the study are
presented. Finally, in section 6, we identify limitations
of our approach and suggest areas for future research.

2. Background and related work

Designing collaboration processes requires
knowledge that is not easily accessible to practitioners
who are domain experts but not experienced
facilitators. Consequently, in order to exploit the
benefits of GSS tools, teams rely on skilled facilitators
to design a collaboration process that minimizes

distraction, focuses attention towards achieving a
shared goal [8] and helps group members align their
individual goals with those of the group [9].

While a group can significantly benefit from a
facilitator-led GSS session, professional facilitators are
expensive and difficult to retain. In addition, their
extensive set of skills is difficult to transfer and thus an
organization can become reliant on them [6]. In order
to guide practitioners and inexperienced facilitators to
design collaboration processes, toolkits have been
developed to help find the best thinkLet for the
collaboration task at hand [20,29].

The toolkit by Kolfschoten, et al. [20] tries to
narrow down the choice of thinkLets by filtering them
based on their result, input, special characteristics and,
most importantly, the desired pattern of collaboration.
In this toolkit, the practitioner chooses from among the
filtered list of thinkLets, which still requires a
considerable amount of knowledge about collaboration
engineering, thinkLets, and GSS design.

AgendaBuilder [29] assists novice facilitators in
designing collaboration processes by helping them find
and connect together the best thinkLets. This toolkit
has the ability to filter the list of candidate thinkLets
using the same methods as Kolfschoten, et al. [20]. It
also has a rule base for each thinkLet based on
contextual factors (e.g. group size, time, etc). The
practitioner can use this rule base to determine if a
thinkLet is a good match for the task at hand.
AgendaBuilder provides no support for comparing
thinkLets using these rules or for helping practitioners
make trade-offs among these rules to find the best
thinkLet for a task. Thus to find the best thinkLet, the
practitioner must manually perform rough qualitative
comparisons between thinkLets based on these rules.

There are also toolkits that use approaches other
than collaboration engineering and thinkLets. None of
these toolkits (e.g., [1,2,24,11]) have the capability to
suggest all three of the collaboration elements
presented earlier: a tool, its configuration, and a script.
Toolkits such as those used by Aiken, et al. [1] and
Antunes, et al. [2] have the ability to suggest the
relevant tool but not the configuration or script. The
toolkit by Antunes, et al. [2] helps the facilitator break
the collaboration process into sub-tasks that fit into the
collaboration patterns proposed by Kaner [17]. It then
suggests a tool for each of those sub-tasks. Expert
Session Planner (ESP) [1], which is designed to
support facilitators during critical pre-session planning,
has the ability to suggest a tool for a collaboration task
based on answers to questions asked of the user.

In summary, there are two types of methods for
guiding practitioners in the design of collaborative
process. The first includes methods that do not use
collaboration engineering techniques (e.g., [1,2,24,11])

and, thus, do not have the capability to leverage all
three of the collaboration elements. The second type
includes methods that make use of collaboration
engineering techniques. These methods do not provide
support for inexperienced practitioners to compare
alternative thinkLets and make trade-offs.

We propose a design approach that helps
practitioners compare and select different thinkLets
without needing prior knowledge about collaboration
engineering.

3. Design

A decision problem can be structured into three
main components: a set of criteria or goals; a set of
solutions or alternatives; and, consequences of the
alternatives [13]. To design a successful collaboration
process, the goals of the collaboration need to be
understood and a decision needs to be made about
which thinkLet (or combination of thinkLets) to use to
achieve those goals. Each thinkLet has different
consequences on the satisfaction of the group’s goals
and thus a decision about which thinkLet to use
involves comparing alternatives and making trade-offs.

Since the problem of choosing the best thinkLet can
be formulated as a MCDM problem, we use the
nomenclature suggested by Stewart [28].

We define Tset to be the set of all thinkLets
available from which a selection of a thinkLet t ∈ Tset
must be made (that is, Tset is the set of alternatives).

In addition to Tset, we define Cset, as the set of
criteria by which elements of Tset are to be compared.
These criteria can be identified by carefully reviewing
the documentation of each thinkLet t in Tset. In
addition, criteria that have been proposed in previous
research for classifying thinkLets [18] can be used.
Most of these criteria are related to group
characteristics (e.g., the size of the group), meeting
characteristics (e.g., the time that should be spent on a
specific topic), or group goals and intention (e.g.,
producing creative ideas). For example if Tset =
{OnePage, FreeBrainstorming} then Cset will be: {Number of
people in the group, Time at hand}. This is because according
to the documentation of these thinkLets [5], if less than
6 people are in the group or the team has less than 10
minutes to work on the activity, OnePage should be
selected otherwise FreeBrainstorming is the better
alternative. Every time a new thinkLet is added to the
Tset, the criteria that are needed to compare that
thinkLet with other thinkLets of Tset need to be added
to Cset. For example, if we add FastFocus to Tset then Cset
will become: {Number of people in the group, Time at hand,
Pattern of collaboration}.

Finally, for each thinkLet t in Tset, we define a set
of attributes At = (at

c1, at
c2,…, at

cn) where n is the
number of criteria in Cset and at

ci is the attribute
representing the outcome of choosing thinkLet t on
criterion ci. For instance, for the thinkLet OnePage, and
the criterion ‘Pattern of collaboration’,

= Diverge

MCDM is a formal approach that can be used to
solve problems that can be defined in terms of
relatively precise sub-goals or criteria, which are
generally conflicting [28]. MCDM techniques work
best when the criteria are quantitative. In our case,
quantitative measurements are not always appropriate
for choosing among the alternatives because many of
the factors that must be taken into consideration are
qualitative (e.g., creative comments). MCDM methods
that enable a decision maker to find the best alternative
in the absence of quantitative data are very
cumbersome even if there are only a few alternatives
[12]. Since the selection space of thinkLets and the
number of criteria are large and can grow without a
bound [18], MCDM techniques cannot be used alone.
Therefore, our model utilizes a decision tree as a
classifier that first finds the best class of thinkLets that
match the group’s goals and then, if the class contains
more than one thinkLet, uses MCDM techniques to
find the best thinkLet among the alternatives within
that class.

3.1. The decision tree

In our proposed decision tree, each leaf is a
nonempty set of thinkLets. Internal nodes represent a
point where criteria must be compared to make a
choice between a number of attributes and each branch
represents the outcome of choosing one of the possible
attributes. As with any other decision tree, each path
from the root to a leaf represents a classification rule.
At each node the attributes being compared have either
qualitative or quantitative values.

Most of the time, in order to achieve a team’s goals,
a collaboration process must be designed that consists
of more than one thinkLet. Because the output
resulting from thinkLet t limits the set of thinkLets that
can be selected to follow t, and each decision starts at
the root of the tree, there is a branch from the root for
each possible previously selected thinkLet t’ in Tset plus
a branch that represents the case when no thinkLet has
been selected previously. However, if there is no
thinkLet in Tset that could follow t’, there is no branch
from the root for the case t’ was previously selected.
For instance if Tset ={FreeBrainstorming, FastFocus}, the root
of the decision tree contains the following branches:
{‘No thinkLet was selected before’, ‘FreeBrainstorming was

selected before’}. Note that there is no ‘FastFocus was selected
before’ branch, since it is not a good practice to send the
output of the FastFocus activity directly to a
FreeBrainstorming activity.

The decision tree model takes past research into
consideration regarding appropriate sequences of
thinkLets that have been identified [7,5]. For example,
in order to reach consensus on the key issues of an
unstructured list, it has been suggested that the
sequence Fastfocus + StrawPoll + Crowbar is appropriate [5].
Thus, if ‘reach consensus on the key issues of an unstructured list’
is selected by the practitioner, this sequence of
thinkLets should be suggested, rather than suggesting a
single thinkLet (e.g., FastFocus alone). Figure 1 (left
side) depicts an example of decision tree created for
Tset = {OnePage, FreeBrainstorming, ComparativeBrainstorming}.

A ‘not sure / not important’ branch is included in
the model to encourage the practitioner to postpone a
decision if he/she is not sure which branch to take. For
example he/she might not know in advance how many
comments will be generated in a brainstorming
activity, or he/she might not be able to decide if it is
best to encourage people to think deeply about the
solution (depth) or to push them for breadth and
creative solutions. Note that in this situation both
breadth and depth might be highly desirable which
makes it harder for the practitioner to decide. In these
situations MCDM techniques can be used to help
practitioners make trade-offs.

3.2. MCDM and goal programming

Each leaf of the decision tree either contains a
single thinkLet or a set of possible thinkLets. In some
cases, the criteria evaluated at each node in the

decision tree will result in a path to a leaf with a single
thinkLet that can be selected. In this case, the best
thinkLet is found using only the classification rules;
however, if the leaf contains a set of thinkLets, then a
choice must be made among possibly conflicting goals
(e.g., producing high quality ideas vs. producing
creative ideas). In these situations, MCDM techniques
can be used to guide the practitioner select a single,
best thinkLet from the set.

Suppose there is a leaf node called ‘leaf’, that
contains a set Tleaf, Tleaf Tset of more than one
thinkLet. We define Cleaf, Cleaf Cset, as the set of
criteria or goals that can be used to compare the
alternative thinkLets in Tleaf. Also, for each thinkLet t
in Tleaf, we define a set of attributes Aleaf

t = (at
c1,

at
c2,…, at

ck) where k < n is the number of criteria in
Cleaf and at

ci is the attribute representing the outcome of
choosing thinkLet t on criterion ci. Note that Aleaf

t is a
subset of the At because Cleaf Cset.

For each Tleaf where |Tleaf| > 1, in the decision tree, a
goal model is created that captures the positive and
negative contribution of each t in Tleaf on each goal in
Cleaf. Figure 1 (right side) shows the goal model created
for Tleaf = {FreeBrainstorming, ComparativeBrainstorming}
where Tset = {OnePage, FreeBrainstorming,
ComparativeBrainstorming}.

Elahi et al. use goal modeling notation to represent
criteria and alternatives in the form of a decision
problem [12]. Their notation consists of two main
modeling elements: solutions (or alternatives) and
goals (or criteria). We propose to use the same
approach and notation as [12] to create a goal model
for each Tleaf.

The challenge that we are facing is that in order to
be able to choose the best thinkLet in Tleaf, we first

Figure1. An example of a decision tree and goal model for Tset = {OnePage, FreeBrainstorming,
ComparativeBrainstorming}

need to determine the value of the elements of Aleaf
t for

each thinkLet t in Tleaf. But since the criteria or goals in
Cleaf are often intangible, assigning a value to each
attribute is a non-trivial task. The comparing the
alternative method can be used to give a value between
0-5 to each attribute in Aleaf

t. That is, for each criteria ci
in Cleaf, if thinkLet t maximally satisfies ci, the value of
at

ci is 5. Correspondingly, for each thinkLet t’ in Tleaf,
the value of at’

ci is assigned a value relative to the
maximally-satisfying attribute value at

ci. The attribute
values can be determined from the thinkLet’s
documentation. It is worth mentioning that it is
possible for more than one thinkLet to have the same
value for an attribute that satisfies a specific goal. For
example, if thinkLets t and t’ both maximally satisfy
the goal ci, then at

ci = at’
ci = 5.

Comparing alternatives has been recognized as a
powerful approach when a decision maker needs to
work with conflicting and intangible criteria which, by
definition, have no scales of measurement [27]. This
approach is the basis of several MCDM methods such
as ratio pair-wise comparison [26] and Simple Multi-
Attribute Rating Technique (SMART) [30]. Our
method for determining the value of the attributes is
based on the direct rating technique, which can be
classified as a SMART method.

We propose using a scale for comparison that has
been suggested in [12]. This scale consists of 6 levels
for distinguishing the decision elements: Zero (0); Low
(1); Medium Low (2); Medium (3); Medium High (4);
and, High (5). In this scale, 0 is the minimum
satisfaction level for a goal and 5 is the maximum
satisfaction level for a goal. The table in Figure 1
shows the values that were assessed for the attributes
of thinkLets FreeBrainstorming and ComparativeBrainstorming
(as determined from the thinkLet documentation).

The goals associated with each Tleaf are assigned
weights that must be determined according to the given
collaboration needs and so the practitioner must assign
weights to each of the goals. To do this, the
practitioner needs to rate the criteria in Cleaf using a 5-
point Likert-type scale, where 1 means satisfying the
criterion (or goal) has the lowest priority and 5 means
that satisfying the criterion has the highest priority.
Rating is an example of direct assessment weighting
and can be used to determine the priority of each
criteria based on the decision maker’s preferences [16].

After each criterion ci in Cleaf has been assigned a
weight wi, the preemptive goal-programming rule
combined with an additive value function can be used
to find the best alternative (Figure 2 shows a step-by-
step example).

To begin, a list of candidate solutions is defined
called Tcandid. Initially, Tcandid = Tleaf. In the first step, all
criteria with the same weight are grouped together.

Next, the groups are ordered by their weights (or their
priority) such that the group with the highest priority is
GR1 and the group with the lowest priority is GRz
where z is the number of groups.

Figure 2. Choosing the best thinkLet using
preemptive goal programming and an additive

value function.

Then, for each of the criteria in GR1, a level of

satisfaction is determined in the following way. In each
iteration the satisfaction value of criterion ci is
dynamically defined as the Minimum of [Medium,
Mci], where Mci is the maximum value of the aci

t. If a
thinkLet t in Tleaf satisfies none of the criteria in the
first group, then t is removed from Tcandid.

After removing the thinkLets that do not satisfy any
goal of the first group, if more than one thinkLet
remains in Tcandid, the additive value function is used to
remove solutions from Tcandid that do not maximize the
value of this function. Note that only the attributes of
the thinkLets associated with the goals in the first
group (the group with the highest priority) are used in
this function. In other words, if CGR1 Cleaf, (where

|CGR1| = p), is the group with criteria of highest priority,
the additive value function is defined as:

where t is in Tcandid, and aci
t is the attribute in Aleaf

t
which is associated with the goal ci in CG1 . Note that
there is no weight in this formula since in this group all
the criteria have the same weight.

This process is repeated for each priority group in
turn, until the list of the size of Tcandid is reduced to one,
or there are no more criteria left. It is very unlikely that
the latter case will happen because the thinkLets
typically have very different attribute values. But in the
case that there are no criteria left and more than one
thinkLet remains in Tcandid, any one of the thinkLets
that remain in Tcandid can be chosen at random as a
solution.

4. Evaluation

In order to evaluate our approach, we created a
prototype, CP_Dez, that enables a user to navigate
through the full set (Tset) of 39 thinkLets in [5], making
trade-offs among different goals using the multi-
criteria decision making (MCDM) techniques
described in Section 3.2. Navigation of the thinkLets is
supported by a user interface (UI) that provides access
to the underlying decision-tree model described in
Section 3.1 (see Figure 3).

Figure 3. CP-Dezʼs UI

Each selection determines the edge that will be

traversed in the underlying decision tree. At each
subsequent node of the decision tree, prompts are
presented to either gather choices among alternatives
(e.g., Figure 3) or, if a leaf with more than one thinkLet
is reached, to gather rating information about the
importance of specific goals or constraints (e.g., Figure
4). In the latter case, ratings are needed to provide
input to the MCDM process in order to choose a
thinkLet from a class of thinkLets.

The result of this procedure will be a selected
thinkLet or a sequence of thinkLets. Once a thinkLet is
selected, it is displayed on the right hand side of the

interface (along with any previously selected thinkLets
in the sequence) and the practitioner is prompted to
indicate if they are satisfied with this final result or if
they would like to continue with the task of designing
the collaboration process. This process is repeated,
each time starting at the root node, until satisfaction
with the final sequence of thinkLets is indicated.

Figure 4. The participants are asked to rate

criteria when the leaf contains a set of more
than one thinkLet

Our evaluation was carried out through an

experiment in which participants were asked to design
a collaboration process for a scenario whereby a
consortium of universities wish to revise its joint
strategy. We chose this scenario from a paper in the
collaboration engineering literature [4] because the
design presented in the paper can be used as the
“answer key” or “ground truth” result to which we can
compare the quality of the designs produced by our
participants. Furthermore, this multi-organization
strategy development scenario can be understood by
participants with different domain expertise. It also
requires tasks from all of the different collaboration
patterns, which can demonstrate that the prototype can
be used to select thinkLets from different patterns of
collaboration categories. In [4], the scenario was
broken into 12 tasks. For the purposes of our
experiment, we selected seven of the 12 tasks and
omitted five that used the same thinkLets as the other
seven tasks.

We asked eighteen participants to design a
collaboration process for the scenario above. The
participants were recruited using convenience sampling
and had a variety of domain expertise including:
science and engineering, business, education,
management, and human resources. Half of the
participants used our prototype (CP-Dez) to design the
collaboration process and the other half used the
thinkLet book [5]. We used a between-subjects study
design with one independent variable: the tool that
subjects used to design the collaboration process. This
independent variable had 2 possible levels: book vs.
CP-Dez. The dependent variables in this study were
time and quality of the design. The efficiency of the
design process was also measured using the quality

over time. These variables were used to test the
following hypotheses: people who use the tool will be
able to design H1) a higher quality collaboration
process for that scenario in H2) a shorter amount of
time and H3) more efficiently than those who use the
book.

We identified work experience as a confounding
variable and handled the effect of it by using a block
design; that is, two experience blocks were defined.
The first block contained current graduate students or
recent graduates (all with less than 3 years of work
experience) and the second block contained
experienced participants who had more than 5 years of
work experience. The treatments (book or CP-Dez)
were randomly assigned to the participants in each
block. The participants were recruited based on their
work experience such that an equal number of
participants (nine) was in each block. Overall, five
experienced and four inexperienced participants used
the book and the rest used CP-Dez.

We created a web application that guided each
participant through the study. The application starts by
asking participants to participate in a short (15
minutes) mandatory interactive training session on the
basics of collaboration engineering, such as task
breakdowns and patterns of collaboration. After the
training session, seven tasks from the multi-
organization strategy development scenario were given
to the participants who were asked to design a
collaboration process by selecting a thinkLet or
sequence of thinkLets for each of these tasks (See
Appendix A). The participants who were assigned to
work with the thinkLet book had to look for the right
thinkLets in the book and type the thinkLets’ names
into the text boxes that were provided in the web
application. The CP-Dez interface was embedded in
the application for those who were assigned to work
with it and the suggested thinkLets that were accepted
by the participants were automatically recorded as the
answer.

In order to measure the quality of the designs, we
compared the input, output, and criteria of each
individual thinkLet selected by participants with those
in the ground truth design. In addition, for each
combination of two consecutive thinkLets, we
determined if the combination was Tricky, Excellent,
or Impossible [19]. We assigned quality points to the
thinkLet(s) chosen for each task. Details of the point
breakdown for a given task can be found in Appendix
A. The selected thinkLets were evaluated and points
assigned based on information about the ground truth
in [4] and from descriptions of thinkLets in [5].

The time taken to complete the designs by each
participant was also measured and the efficiency of the
design process was calculated as quality over time.

5. Results

Figure 5, 6, and 7, respectively show the average
quality of the designs, average time taken to complete
the design of all tasks, and the efficiency of the design
procedure for participants who used CP-Dez and the
book. For clarity, in these figures, we have separated
the scores of experienced and inexperienced
participants for each treatment.

Figure 5. Comparison of the avg quality

Figure 6. Comparison of the avg time spent

Figure 7. Comparison of the avg efficiency

Because of our small sample size, we used the
nonparametric Mann-Whitney test to determine the
significance of the results and tested our two-tailed
hypotheses. We found that there is no significant
difference between the qualities of the collaboration

processes designed using CP-Dez or the thinkLet book.
We also found that the average time taken to complete
the design was not significant for participants who
used CP-Dez or the thinkLet book. However a Mann-
Whitney test indicated that the efficiencies of the
design process was significantly greater for
participants who used CP-Dez (Mdn = 0.48) than for
participants who used the thinkLet book (Mdn = 0.29),
U = 17, p = 0.042. This indicates that in a unit of time,
participants created higher quality designs when using
CP-Dez.
 The resulting thinkLets chosen for the tasks
highlight some of CP-Dez’s strengths and weaknesses.
For example, the solution in [4] proposed the
Concentration thinkLet for merging and generalizing
the statements of a list. In the book, this thinkLet is
listed under the Organize pattern; however, it can also
be used to produce a Converge-like pattern, for
example, to remove the redundancy in a list. In CP-
Dez, this thinkLet can be found in paths that include an
Organize or Converge branch. According to our
results, most of the participants considered this task to
be a Converge task (16/18). In fact, 8/9 of the
participants who used CP-Dez decided that the
Converge attribute was the best value that describes
this task’s pattern of collaboration and 6/8 of them
found the Concentration thinkLet as the match for the
task. However, only 1 out of 9 participants who used
the book selected it as a fit for accomplishing the task.
This is one of the strengths of CP-Dez. When the
borders between the categories are fuzzy for some
alternatives, the alternatives can be shown under all of
those categories and the practitioner can make the
decision based on other important criteria.

The results of another task in our study can be used
to illustrate another strength of CP-Dez. In this task the
goal of the collaboration was to prioritize the
challenges of having an information system that is
shared between multiple universities. This complicated
task requires a sequence of thinkLets. Inexperienced
participants using the book performed very poorly on
this task (the quality score for all of them was negative
for this task). However, the inexperienced participants
who used CP-Dez performed very well on this task
(average quality score of 3.4/5 for this task). For this
particular task, inexperienced participants who used
CP-Dez performed better than the experienced
participants who used the book (whose average score
was 2.4/5 for this task).

One of the weaknesses of CP-Dez is that when a
participant cannot find an option that matches with
what he/she wants to do, it is very difficult to choose
the next step and find the best thinkLet. Even though
the History button was used a lot during the study (all
of the participants who used CP-Dez went back and

changed their answers at least twice), there were still
cases in which participants had trouble choosing the
correct option. In the future we plan to give
practitioners access to the pool of candidate thinkLets.
This will enable more experienced people to manually
select a thinkLet from among the remaining candidates
at any step. This feature can help reduce the time
needed for the selection process if the practitioner is
confident that he/she can manually select a thinkLet or
if he/she does not agree with a suggested thinkLet and
wants to change that suggestion.

6. Conclusion

In this paper, we presented an approach which can
be used to help practitioners in designing collaboration
processes using thinkLets. Our study suggests that this
approach significantly improves the efficiency of the
design procedure. In our approach, the model can be
easily expanded and maintained, by adding the new
comparison criteria to the existing decision tree,
updating the leaves, and adding/updating necessary
goal models as described in section 3. This model
highlights small differences between thinkLets which
might not be obvious to practitioners or inexperienced
facilitators. In addition it can be useful even to more
experienced facilitators who need to make trade-offs
between different thinkLets in more complicated
situations where a team needs to reach several
qualitative goals with different priorities.

Our preliminary study was a double-blind
experiment. That is, the scenario was chosen after the
creation of the CP-Dez’s model and no fine-tuning was
performed on the model after the scenario was chosen.
This could help avoid the experimenters’ tendency to
fine-tune the model to work better with the chosen
scenario. Although the scenario is carefully chosen so
that it contains all different patterns of collaboration, it
cannot fully support the claims of generalizability (this
is a threat to external validity). Additional studies
should be carried out using different scenarios in which
experts evaluate the designs created by CP-Dez instead
of comparing designs to a ground truth. It would also
be interesting to evaluate not only the collaboration
process design produced using CP-Dez but the results
of having novice facilitators carry out the suggested
collaboration process to see if the design created by
CP-Dez lead to an effective decision-making process.

While creating our prototype, although the process
of reviewing the thinkLet documentation to identify the
attributes of the thinkLets and the criteria for
comparing thinkLets was performed systematically,
one of the major limitations of this work is the
subjectivity involved in doing so. In the future, a
community of experts should verify the attributes and

criteria. We are planning to create a platform that
enables the community of collaboration engineers to
create, maintain, and update a unified model. This
model can then be used as is or can be customized for a
specific organization’s needs. In this platform,
branches of the tree, and goal models can be modified
based on the group’s consensus.

7. Acknowledgements

This research was supported by an NSERC
Collaborative Research and Development Grant with
SAP.

8. References
[1] Aiken, M. W., Motiwalla, L. F., Sheng, O. L., &
Nunamaker Jr, J. F. (1990, January). "ESP: An expert system
for pre-session group decision support systems planning." In
System Sciences, 1990., Proceedings of the Twenty-Third
Annual Hawaii International Conference on, vol. 3, pp. 279-
286. IEEE, 1990.

[2] Antunes, P., Ho, T., & Carriço, L. "A GDSS agenda
builder for inexperienced facilitators." Proceedings of the
10th EuroGDSS workshop. Copenhagen, Denmark: Delft
University of Technology, 1999.

[3] Bajwa, D. S., Lewis, L. F., Pervan, G., & Lai, V. S. "The
adoption and use of collaboration information technologies:
International comparisons." Journal of Information
Technology 20, no. 2 (2005): 130-140.

[4] Bragge, J., Merisalo-Rantanen, H., Nurmi, A., & Tanner,
L. "A repeatable e-collaboration process based on thinklets
for multi-organization strategy development." Group
Decision and Negotiation 16, no. 4 (2007): 363-379.

[5] Briggs, R. O., & De Vreede, G. J. thinkLets: building
blocks for concerted collaboration. University of Nebraska,
Center for Collaboration Science, 2009.

[6] Briggs, R. O., De Vreede, G. J., & Nunamaker Jr, J. F.
"Collaboration engineering with thinkLets to pursue
sustained success with group support systems." J. of
Management Information Systems 19.4 (2003): 31-64.

[7] Briggs, R. O., De Vreede, G., Nunamaker Jr, J. F., &
Tobey, D. "ThinkLets: achieving predictable, repeatable
patterns of group interaction with group support systems
(GSS)." In System Sciences, 2001. Proceedings of the 34th
Annual Hawaii International Conference on, pp. 9-pp. IEEE,
2001.

[8] Clawson, V. K., Bostrom, R. P., & Anson, R. "The role of
the facilitator in computer-supported meetings." Small Group
Research 24.4 (1993): 547-565.

[9] De Vreede, G. J., & Briggs, R. O. "Collaboration
engineering: designing repeatable processes for high-value
collaborative tasks." System Sciences, 2005. HICSS'05.
Proceedings of the 38th Annual Hawaii International
Conference on. IEEE, 2005.

[10] De Vreede, G. J. "A field study into the organizational
application of group support systems." Journal of
Information Technology Case and Application Research 2,
no. 4 (2000): 27-47.

[11] Dickson, G. W., Partridge, J. E. L., & Robinson, L. H.
"Exploring modes of facilitative support for GDSS
technology." MIS Quarterly (1993): 173-194.

[12] Elahi, G., & Yu, E."Comparing alternatives for
analyzing requirements trade-offs–In the absence of
numerical data." Information and Software Technology 54.6
(2012): 517-530.

 [13] Figueira, J., Greco, S., & Ehrgott, M. Multiple criteria
decision analysis: state of the art surveys. Vol. 78. Springer,
2005.

[14] Fjermestad, J., & Hiltz, S. R. "Group support systems: A
descriptive evaluation of case and field studies." Journal of
Management Information Systems 17.3 (2000): 115-160.

[15] Grohowski, R., McGoff, C., Vogel, D., Martz, B., &
Nunamaker, J. (1990). "Implementing electronic meeting
systems at IBM: lessons learned and success factors." Mis
Quarterly (1990): 369-383.

[16] Hobbs, B. F., & Meier, P. M. "Multicriteria methods for
resource planning: an experimental comparison." Power
Systems, IEEE Transactions on 9.4 (1994): 1811-1817.

[17] Kaner, S. Facilitator's guide to participatory decision-
making. John Wiley & Sons, 2007.

[18] Kolfschoten, G. L., Briggs, R. O., Appelman, J. H., & de
Vreede, G. J. "ThinkLets as building blocks for collaboration
processes: a further conceptualization." In Groupware:
Design, Implementation, and Use, pp. 137-152. Springer
Berlin Heidelberg, 2004.

[19] Kolfschoten, G. L., & De Vreede, G. J.. "The
collaboration engineering approach for designing
collaboration processes." Groupware: design,
implementation, and use. Springer Berlin Heidelberg, 2007.
95-110.

[20] Kolfschoten, G. L., & Veen, W."Tool support for GSS
session design." System Sciences, 2005. HICSS'05.
Proceedings of the 38th Annual Hawaii International
Conference on. IEEE, 2005.

[21] Moradian, A., Nasir, M., Lyons, K., Leung, R., & Sim,
S. E. (2014, April). "Gamification of collaborative idea
generation and convergence." In CHI'14 Extended Abstracts
on Human Factors in Computing Systems, pp. 1459-1464.
ACM, 2014.

[22] Munkvold, B. E., & Zigurs, I. "Integration of e-
collaboration technologies: Research opportunities and
challenges." International Journal of e-Collaboration (IJeC)
1.2 (2005): 1-24.

[23] Nunamaker, J. F., Briggs, R. O., Mittleman, D. D.,
Vogel, D. R., & Balthazard, P. A. (1997). "Lessons from a
dozen years of group support systems research: A discussion
of lab and field findings." Journal of management
information systems (1996): 163-207.

[24] Nunamaker, J. F., Dennis, A. R., Valacich, J. S., Vogel,
D., & George, J. F. "Electronic meeting systems."
Communications of the ACM 34, no. 7 (1991): 40-61.

[25] Post, B. Q. "A business case framework for group
support technology." Journal of Management Information
Systems 9.3 (1992): 7-26.

[26] Saaty, T. L. "A scaling method for priorities in
hierarchical structures." Journal of mathematical psychology
15.3 (1977): 234-281.

[27] Saaty, T. L. "The analytic hierarchy and analytic
network processes for the measurement of intangible criteria
and for decision-making." Multiple criteria decision analysis:
state of the art surveys. Springer New York, 2005. 345-405.

[28] Stewart, T. J. "A critical survey on the status of multiple
criteria decision making theory and practice." Omega 20.5
(1992): 569-586.

[29] Vivacqua, A. S., Ferreira, M. S., & de Souza, J. M.
"AgendaBuilder: A system to support meeting design." In
Computer Supported Cooperative Work in Design
(CSCWD), 2010 14th International Conference on, pp. 596-
601. IEEE, 2010.

[30] Von Winterfeldt, D., & Edwards, W. Decision analysis
and behavioral research. Vol. 604. Cambridge: Cambridge
University Press, 1986.

Appendix A:

In this Appendix, the scenario and one of the tasks
broken out of the scenario are presented. The correct
answer (ground truth or answer key) from [4] is given
and the metrics (point system) that was used to
measure the closeness of participant answers to the
correct answer are explained. The maximum score is 5.

Scenario: The team tries to create an agenda for a six
hour process of revising the strategy of the consortium
of 13 Finnish universities in charge of a joint student
information system (IS). This information system
serves three user groups: student administration,
students, and teachers. There are 18 team members in
this session (ten represent student administration, seven
represent IT services and one represents the
consortium). Each team member has their own
computer. The team wants to mainly focus on
creativity tasks without any pressure to make final
decisions. Also, democratic involvement of the team
members and equality is very important (anonymity is
preferred).
Example Task: In the first step of the collaboration
process, the team members need to identify the
challenges related to having a joint information system.
The time allocated for this task is 35 minutes and it is

expected that a large amount of ideas will be
generated.
Correct Answer (from [4]): FreeBrainstorming
(Diverge)
Table 1 explains how we measure the quality of the
answers given by study participants:

Point Criteria Additional	
 Comments	
 for	

this	
 specific	
 example

1 The	
 collaboration	
 pattern	

is	
 chosen	
 correctly

The	
 process	
 should	
 contain	

a	
 Diverge	
 thinkLet

1 The	
 same	
 thinkLet	
 as	
 the	

ground	
 truth	
 thinkLet	
 or	
 a	

thinkLet	
 that	
 has	
 the	
 same	

criteria	
 is	
 chosen	

FreeBrainstorming	
 thinkLet	

should	
 be	
 chosen

1 The	
 Diverge	
 thinkLet	
 is	

followed	
 by	
 a	

convergence	
 or	

elaboration	
 thinkLet	

-­‐1 The	
 combination	
 of	

thinkLets	
 proposed	
 is	

"impossible"	
 (see	
 section	

1	
 for	
 the	
 definition	
 of	
 an	

impossible	
 combination)

-­‐0.5 The	
 combination	
 of	

thinkLets	
 proposed	
 is	

"tricky"	
 (see	
 section	
 1	
 for	

the	
 definition	
 of	
 a	
 tricky	

combination)

1 The	
 thinkLets	
 are	
 matched	

with	
 task’s	
 specifications	

and	
 inputs

In	
 this	
 	
 example:
*	
 The	
 input	
 should	
 be	
 a	

single	
 question
*	
 more	
 than	
 6	
 people	
 are	

in	
 the	
 team
*	
 The	
 time	
 is	
 more	
 than	
 10	

minutes
*	
 Creativity	
 is	
 important
*	
 Anonymity	
 is	
 important

1 The	
 output	
 of	
 the	

sequence	
 of	
 thinkLets	
 can	

be	
 used	
 to	
 accomplish	
 the	

task

The	
 sequence	
 should	
 at	

some	
 point	
 produce	
 a	
 large	

set	
 of	
 brainstorming	

comments

-­‐1 There	
 is	
 a	
 redundant	

thinkLet	
 in	
 the	
 sequence

-­‐1 The	
 sequence	
 of	
 thinkLets	

or	
 the	
 thinkLet	
 should	
 not	

be	
 used	
 in	
 these	

situations

Use	
 the	
 documentation	
 of	

the	
 thinkLets	
 to	
 judge

Table 1. Measuring scheme for quality of

answers

